Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsy Res ; 201: 107337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461594

RESUMO

Post traumatic epilepsy (PTE) is a treatment-resistant consequence of traumatic brain injury (TBI). Recently, it has been revealed that epileptiform activity in acute chemoconvulsant seizure models is accompanied by transient shrinkages of extracellular space (ECS) called rapid volume pulsations (RVPs). Shrinkage of the ECS surrounding neurons and glia may contribute to ictogenic hyperexcitability and hypersynchrony during the chronic phase of TBI. Here, we identify the phenomenon of RVPs occurring spontaneously in rat neocortex at ≥ 3 weeks after injury in the controlled cortical impact (CCI) model for PTE. We further report that blocking the electrogenic action of the astrocytic cotransporter NBCe1 with 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) eliminates both RVPs and epileptiform activity in ex-vivo CCI neocortical brain slices. We conclude that NBCe1-mediated extracellular volume shrinkage may represent a new target for therapeutic intervention in PTE.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Neocórtex , Ratos , Animais , Simportadores de Sódio-Bicarbonato/metabolismo , Espaço Extracelular/metabolismo , Neocórtex/metabolismo
2.
Epilepsy Res ; 196: 107217, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37619297

RESUMO

PURPOSE: There are currently no clinical treatments to prevent posttraumatic epilepsy (PTE). Recently, our group has shown that administration of levetiracetam (LEV) or brivaracetam (BRV) shortly after cortical neurotrauma prevents the development of epileptiform activity in rats, as measured ex vivo in neocortical slices. Due to the low incidence of spontaneous seizures in rodent-based models of traumatic brain injury (TBI), chemoconvulsants have been used to test injured animals for seizure susceptibility. We used a low dose of the voltage-gated potassium channel blocker 4-aminopyridine (4-AP) to evaluate posttraumatic epileptogenesis after controlled cortical impact (CCI) injury. We then used this assessment to further investigate the efficacy of BRV as an antiepileptogenic treatment. METHODS: Sprague-Dawley rats aged P24-35 were subjected to severe CCI injury. Following trauma, one group received BRV-21 mg/kg (IP) at 0-2 min after injury and the other BRV-100 mg/kg (IP) at 30 min after injury. Four to eight weeks after injury, animals were given a single, low dose of 4-AP (3.0-3.5 mg/kg, IP) and then monitored up to 90 min for stage 4/5 seizures. RESULTS: The chemoconvulsant challenge revealed that within four to eight weeks, CCI injury led to a two-fold increase in percentage of rats with 4-AP induced stage 4-5 seizures relative to sham-injured controls. Administration of a single dose of BRV within 30 min after trauma significantly reduced injury-induced seizure susceptibility, bringing the proportion of CCI-rats that exhibited evoked seizures down to control levels. CONCLUSIONS: This study is the first to use a low dose of 4-AP as a chemoconvulsant challenge to test epileptogenicity within the first two months after CCI injury in rats. Our findings show that a single dose of BRV administered within 30 min after TBI prevents injury-induced increases in seizure susceptibility. This supports our hypothesis that early intervention with BRV may prevent PTE.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Ratos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Ratos Sprague-Dawley , Pirrolidinonas/farmacologia , Pirrolidinonas/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/etiologia , Convulsões/prevenção & controle , Epilepsia Pós-Traumática/tratamento farmacológico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico
3.
Exp Neurol ; 337: 113571, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340499

RESUMO

This study examined the antiepileptogenic potential of the antiseizure drug (ASD) levetiracetam (LEV) using the in vitro traumatized-slice and in vivo controlled cortical impact (CCI) models of traumatic brain injury (TBI) in rats when administered early after the injury. For the in vitro model, acute coronal slices (400-450 µm) of rat neocortex (P21-32) were injured via a surgical cut that separated the superficial layers from the deeper regions. Persistent stimulus-evoked epileptiform activity developed within 1-2 h after trauma. In randomly selected slices, LEV (500 µM) was bath-applied for 1 h starting immediately or delayed by 30-80 min after injury. Treated and untreated slices were examined for epileptiform activity via intracellular and extracellular recordings. For the in vivo model, rats (P24-32) were subjected to a non-penetrating, focal, CCI injury targeting the neocortex (5.0 mm diameter; 2.0 mm depth). Immediately after injury, rats were given either a single dose of LEV (60-150 mg/kg, i.p.) or the saline vehicle. At 2-3 weeks after the injury, ex vivo cortical slices were examined for epileptiform activity. The results from the traumatized-slice experiments showed that in vitro treatment with LEV within 60 min of injury significantly reduced (> 50%) the proportion of slices that exhibited stimulus-evoked epileptiform activity. LEV treatment also increased the stimulus intensity required to trigger epileptiform bursts in injured slices by 2-4 fold. Consistent with these findings, LEV treatment of CCI-injured rats (n = 15) significantly reduced the proportion of animals that exhibited spontaneous and stimulus-evoked epileptiform bursts in ex vivo cortical slices compared to saline-treated controls (n = 15 rats), and also significantly increased the stimulus intensity required to evoke epileptiform bursts. These results suggest that early administration of LEV has the potential to prevent or reduce posttraumatic epileptogenesis and that there may be a narrow therapeutic window for successful prophylactic intervention.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/fisiopatologia , Córtex Cerebral/fisiopatologia , Epilepsia/prevenção & controle , Epilepsia/fisiopatologia , Levetiracetam/uso terapêutico , Nootrópicos/uso terapêutico , Animais , Lesões Encefálicas Traumáticas/complicações , Córtex Cerebral/lesões , Fenômenos Eletrofisiológicos , Epilepsia/etiologia , Feminino , Masculino , Neocórtex/lesões , Neocórtex/fisiopatologia , Ratos , Ratos Sprague-Dawley , Tempo para o Tratamento
4.
J Neurotrauma ; 27(8): 1541-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20504156

RESUMO

A hallmark of severe traumatic brain injury (TBI) is the development of post-traumatic epilepsy (PTE). However, the mechanisms underlying PTE remain poorly understood. In this study, we used a controlled cortical impact (CCI) model in rats to examine post-traumatic changes in neocortical excitability. Neocortical slices were prepared from rats at 7-9 days (week 1) and 14-16 days (week 2) after CCI injury. By week 2, we observed a substantial gray matter lesion with a cavity that extended to the hippocampal structure. Fluoro-Jade B staining of slices revealed active neuronal degeneration during weeks 1 and 2. Intracellular and extracellular recordings obtained from layer V revealed evoked and spontaneous epileptiform discharges in neocortices of CCI-injured rats. At week 1, intracellular recordings from pyramidal cells revealed evoked epileptiform firing that was synchronized with population events recorded extracellularly, suggestive of increased excitability. This activity was characterized by bursts of action potentials that were followed by recurrent, repetitive after-discharges. At week 2, both spontaneous and evoked epileptiform firing were recorded in slices from injured rats. The evoked discharges resembled those observed at week 1, but with longer burst durations. Spontaneous activity included prolonged, ictal-like discharges lasting up to 8-10 sec, and briefer interictal-like burst events (<1 sec). These results indicate that during the first 2 weeks following severe CCI injury, there is a progressive development of neocortical hyperexcitability that ultimately leads to spontaneous epileptiform firing, suggesting a rapid epileptogenic process.


Assuntos
Lesões Encefálicas/complicações , Epilepsia/etiologia , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Animais , Lesões Encefálicas/patologia , Eletroencefalografia , Eletrofisiologia , Epilepsia/patologia , Técnicas In Vitro , Potenciais da Membrana/fisiologia , Neocórtex/patologia , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Técnicas de Patch-Clamp , Células Piramidais/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...